×

canonical transformation meaning in Chinese

典范形式
典型变换
正则变换
正则交换

Examples

  1. Quantum operator methods associated with canonical transformation for 1d harmonic oscillator problem
    哈密顿算符的对角化与能量本征值问题的代数解法
  2. The damped harmonic hamiltonian is infered from harmonic hamiltonian , by introducing the canonical transformation
    从线性谐振子哈氏量出发,通过正则变换,得到了受迫阻尼谐振子哈氏量。
  3. Mapping of the hulthn potential intop ? schl - teller potential under point canonical transformation mapping of the hulthn potential intoposchl - teller potential under point canonical transformation
    在点正则变换下赫耳顿势映射至潘歇-推劳势
  4. We deduce easily the coherent term of quantum dynamical model ( the off - diagonal of reduced density matrix ) by improving the nature of displace operator and the nature of coherent states . then , the interaction is energies of a two - photon mechanism and the usual one - photon or liner driving mechanism . we deduce the coherent term by improving the nature of squeezing operators , displace operators and canonical transformation
    其一,仅有阻尼相互作用和势能相互作用,此时利用位移算符的性质和相干态的性质很方便地推导了量子动力学模型的相干项(约化密度矩阵的非对角元) ;其二,考虑的是既有单光子相互作用又有双光子相互作用,这时利用相干态、压缩算符及正则变换等的性质推导出相干项。
  5. And we obtain their annihilation operator and creation operator by improving canonical transformation to harmonic oscillator ' s annihilation operator and creation operator . more , we generalize supersymmetric harmonic oscillator space . in this space , we construct two kinds independent phase operators by improving supersymmetric annihilation operator and supersymmetric creation operator , and then obtain their eigenstates
    我们进一步将它推广到用超对称谐振子的产生算符和湮灭算符来构造适用于超对称谐振子的双摸相位空间里的二类独立的相位算符并相应地求出了其归一化的本征态。

Related Words

  1. canonical coordinates
  2. canonical profile
  3. canonical representation
  4. canonical form
  5. canonical minterm
  6. canonical congruence
  7. canonical dress
  8. canonical system
  9. canonical matrix
  10. canonical equatio
  11. canonical time unit
  12. canonical tra formation
  13. canonical transition matrix
  14. canonical trend
PC Version

Copyright © 2018 WordTech Co.